363 research outputs found

    Stochastic Model and Equivalent Ferromagnetic Spin Chain with Alternation

    Full text link
    We investigate a non-equilibrium reaction-diffusion model and equivalent ferromagnetic spin 1/2 XY spin chain with alternating coupling constant. The exact energy spectrum and the n-point hole correlations are considered with the help of the Jordan-Wigner fermionization and the inter-particle distribution function method. Although the Hamiltonian has no explicit translational symmetry, the translational invariance is recovered after long time due to the diffusion. We see the scaling relations for the concentration and the two-point function in finite size analysis.Comment: 7 pages, LaTeX file, to appear in J. Phys. A: Math. and Ge

    Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation

    Get PDF
    We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browningā€”a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalathā€”a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a NipponbareĀ Ć—Ā Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting

    Molecular structural order and anomalies in liquid silica

    Full text link
    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water.Comment: 30 pages, 8 figure

    Generic mechanism for generating a liquid-liquid phase transition

    Full text link
    Recent experimental results indicate that phosphorus, a single-component system, can have two liquid phases: a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica, predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular liquid metals), and such potentials are often used to decribe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.Comment: 5 pages, 3 ps Fig

    Intra-molecular coupling as a mechanism for a liquid-liquid phase transition

    Get PDF
    We study a model for water with a tunable intra-molecular interaction JĻƒJ_\sigma, using mean field theory and off-lattice Monte Carlo simulations. For all JĻƒā‰„0J_\sigma\geq 0, the model displays a temperature of maximum density.For a finite intra-molecular interaction JĻƒ>0J_\sigma > 0,our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely pre-empted by inevitable freezing. For J=0 the liquid-liquid critical point disappears at T=0.Comment: 8 pages, 4 figure

    Basonuclin-Null Mutation Impairs Homeostasis and Wound Repair in Mouse Corneal Epithelium

    Get PDF
    At least two cellular processes are required for corneal epithelium homeostasis and wound repair: cell proliferation and cell-cell adhesion. These processes are delicately balanced to ensure the maintenance of normal epithelial function. During wound healing, these processes must be reprogrammed in coordination to achieve a rapid re-epithelialization. Basonuclin (Bnc1) is a cell-type-specific transcription factor expressed mainly in the proliferative keratinocytes of stratified epithelium (e.g., corneal epithelium, epidermis and esophageal epithelium) and the gametogenic cells in testis and ovary. Our previous work suggested that basonuclin could regulate transcription of ribosomal RNA genes (rDNA) and genes involved in chromatin structure, transcription regulation, cell-cell junction/communication, ion-channels and intracelllular transportation. However, basonuclin's role in keratinocytes has not been demonstrated in vivo. Here we show that basonuclin-null mutation disrupts corneal epithelium homeostasis and delays wound healing by impairing cell proliferation. In basonuclin-null cornea epithelium, RNA polymerase I (Pol I) transcription is perturbed. This perturbation is unique because it affects transcripts from a subset of rDNA. Basonuclin-null mutation also perturbs RNA polymerase II (Pol II) transcripts from genes encoding chromatin structure proteins histone 3 and HMG2, transcription factor Gli2, gap-junction protein connexin 43 and adheren E-cadherin. In most cases, a concerted change in mRNA and protein level is observed. However, for E-cadherin, despite a notable increase in its mRNA level, its protein level was reduced. In conclusion, our study establishes basonuclin as a regulator of corneal epithelium homeostasis and maintenance. Basonuclin likely coordinates functions of a subset of ribosomal RNA genes (rDNA) and a group of protein coding genes in cellular processes critical for the regulation of cell proliferation

    Transperitoneal laparoscopic right radical nephrectomy for renal cell carcinoma and end-stage renal disease: a case report

    Get PDF
    Nephron-sparing surgery (partial nephrectomy) results are similar to those of radical nephrectomy for small (<4 cm) renal tumors. However, in patients with end-stage renal disease, radical nephrectomy emerges as a more efficient treatment for localized renal cell cancer. Laparoscopic radical nephrectomy (LRN) increasingly is being performed. The objective of the present study was to present a case of a patient under hemodialysis who was submitted to LRN for a small renal mass and discuss the current issues concerning this approach. It appears that radical nephrectomy should be the standard treatment in dialysis patients even for small tumors. The laparoscopic technique is associated with acceptable cancer-specific survival and recurrence rate along with shorter hospital stay, less postoperative pain and earlier return to normal activities

    Long-Time Tails and Anomalous Slowing Down in the Relaxation of Spatially Inhomogeneous Excitations in Quantum Spin Chains

    Full text link
    Exact analytic calculations in spin-1/2 XY chains, show the presence of long-time tails in the asymptotic dynamics of spatially inhomogeneous excitations. The decay of inhomogeneities, for tā†’āˆžt\to \infty , is given in the form of a power law (t/Ļ„Q)āˆ’Ī½Q (t/\tau_{Q}) ^{-\nu_{Q}} where the relaxation time Ļ„Q\tau_{Q} and the exponent Ī½Q\nu_{Q} depend on the wave vector QQ, characterizing the spatial modulation of the initial excitation. We consider several variants of the XY model (dimerized, with staggered magnetic field, with bond alternation, and with isotropic and uniform interactions), that are grouped into two families, whether the energy spectrum has a gap or not. Once the initial condition is given, the non-equilibrium problem for the magnetization is solved in closed form, without any other assumption. The long-time behavior for tā†’āˆžt\to \infty can be obtained systematically in a form of an asymptotic series through the stationary phase method. We found that gapped models show critical behavior with respect to QQ, in the sense that there exist critical values QcQ_{c}, where the relaxation time Ļ„Q\tau_{Q} diverges and the exponent Ī½Q\nu_{Q} changes discontinuously. At those points, a slowing down of the relaxation process is induced, similarly to phenomena occurring near phase transitions. Long-lived excitations are identified as incommensurate spin density waves that emerge in systems undergoing the Peierls transition. In contrast, gapless models do not present the above anomalies as a function of the wave vector QQ.Comment: 25 pages, 2 postscript figures. Manuscript submitted to Physical Review
    • ā€¦
    corecore